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Audio source separation

… Moreover, we can easily handle different types of 
auditory environments!

Hi!



The problem
Source separation models are trained to separate on 
domain-specific data, and do not generalize across 
domains



Motivating question
Given an audio mixture whose source domain is 
unknown, can we automatically select the best model 
for the mixture?
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Solution: a confidence measure

Confidence = .5

Confidence = .01

Confidence = .2

Mixture

Estimate 1

Estimate 2Model 2

Model 3
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…

We develop a confidence measure for systems that 
perform clustering-based separation… to automatically 
select the model output with the best predicted 
separation quality

We develop a confidence measure for systems that 
perform clustering-based separation…



Clustering-based separation

Mapping 
function
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Clustering-based separation
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(T, F) (T, F, K)

Mapping 
function
Mapping 
function
Mapping 
function

… to points in an embedding space…



Clustering-based separation
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(T, F) (T, F, K)

Mapping 
function
Mapping 
function
Mapping 
function

… so we can cluster the embeddings… 



Clustering-based separation

(T, F) Get sources(T, F, K)
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Mapping 
function
Mapping 
function

… to separate sources



Intuition for confidence measure

High confidence 
case

Low confidence 
case

Key insight: The distribution of embedded TF points 
is predictive of the performance of the algorithm 
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1) Silhouette score

Clusters should be tight and far from each other
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Intracluster distance

For a point in clusterxi Ck

Ck

xj

xi

a(xi) =

d(x i, x j)



1) Silhouette score

Clusters should be tight and far from each other
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Intracluster distance

For a point in clusterxi Ck

Ck

xj

xi

1
|Ck| − 1 ∑

xj ∈ Ck,
xi ≠ xj

d(xi, xj)a(xi) =

d(x i, x j)



1) Silhouette score

Clusters should be tight and far from each other
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For a point in clusterxi Ck
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1) Silhouette score

Clusters should be tight and far from each other
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Intercluster distance

For a point in clusterxi Ck

xi

Ck

Cℓ

xj

d(xi , xj )

Intracluster distance
1

|Ck| − 1 ∑
xj ∈ Ck,
xi ≠ xj

d(xi, xj)a(xi) =



1) Silhouette score

Clusters should be tight and far from each other
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For a point in clusterxi Ck
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1) Silhouette score

Clusters should be tight and far from each other
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Intercluster distance

For a point in clusterxi Ck

Intracluster distance
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1) Silhouette score

Clusters should be tight and far from each other
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Intercluster distance
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1) Silhouette score

Clusters should be tight and far from each other
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Combine and scale:

s(xi) =
b(xi) − a(xi)

max {a(xi), b(xi)}

For a point in clusterxi Ck
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1) Silhouette score

Clusters should be tight and far from each other
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Combine and scale:

s(xi) =
b(xi) − a(xi)

max {a(xi), b(xi)}
Average across a sample of 
1000 TF bins in the top 1% 
loudest bins

S(X) = ∑
xi∈X

s(xi)

For a point in clusterxi Ck

xi

Ck



2) Posterior strength

Points should have strong membership to their 
assigned cluster
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2) Posterior strength

Points should have strong membership to their 
assigned cluster
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Ck

For a point in clusterxi Ck

p(xi) =

xi



2) Posterior strength

Points should have strong membership to their 
assigned cluster
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K ( max
k∈[0,...,K]

γik) − 1

K − 1

For a point in clusterxi Ck

Ck
xi

p(xi) =



2) Posterior strength

Points should have strong membership to their 
assigned cluster
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For a point in clusterxi Ck

xi Ck

Average across the top 1% 
loudest bins

P(X) = ∑
xi∈X

p(xi)

K ( max
k∈[0,...,K]

γik) − 1

K − 1
p(xi) =



Confidence measure

C(X) = S(X)P(X)

Combine silhouette score and posterior strength in 
a product to obtain the overall confidence 
measure for the mixture:

silhouette 
score

posterior 
strength

confidence 
measure



Experimental Design

+ + +

Music Speech Environmental sounds

MusDB Wall Street Journal UrbanSound8k

For each domain, train a model with the deep 
clustering objective 

• 2 BLSTM layers 
• 300 hidden units in both directions



2D embedding visualization of a music mixture

Speech model 
Confidence: 0.07

Music model 
Confidence: 0.28

Environmental model 
Confidence: 0.06



Evaluation of confidence measure
Strong correlations between the confidence 
measure and ground-truth separation quality

Confidence vs SDR for speech



Confidence-mediated ensemble
Compare different methods of choosing the 
appropriate model given an audio mixture
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Confidence-mediated ensemble
Compare different methods of choosing the 
appropriate model given an audio mixture

Oracle: select model with best ground-truth performance



Confidence-mediated ensemble
Compare different methods of choosing the 
appropriate model given an audio mixture

Confidence: select model with highest confidence



Confidence-mediated ensemble
Compare different methods of choosing the 
appropriate model given an audio mixture

Random: select model randomly with equal probability
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Compare different methods of choosing the 
appropriate model given an audio mixture

Domain-specific models: applied without switching
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Confidence-mediated ensemble
Compare different methods of choosing the 
appropriate model given an audio mixture



Conclusion

• Confidence measure effectively estimates the 
performance of clustering-based source 
separation algorithms 

• Apply the confidence measure to effectively 
select the appropriate model for a given mixture


