# Model selection for deep audio source separation via clustering analysis

Alisa Liu, Prem Seetharaman, Bryan Pardo DCASE 2020



Northwestern University

#### Audio source separation



We can automatically distinguish different sound sources in an auditory scene...

#### Audio source separation



We can automatically distinguish different sound sources in an auditory scene...

#### Audio source separation



... Moreover, we can easily handle different types of auditory environments!

# The problem

Source separation models are trained to separate on domain-specific data, and do not generalize across domains

# Motivating question

Given an **audio mixture** whose source domain is unknown, can we **automatically select** the best model for the mixture?



We develop a confidence measure for systems that perform clustering-based separation...



We develop a confidence measure for systems that perform clustering-based separation...



Confidence = .2

We develop a confidence measure for systems that perform clustering-based separation...



Confidence = .2

We develop a confidence measure for systems that perform clustering-based separation... to automatically select the model output with the best predicted separation quality



Confidence = .2



Map each time-frequency point...



... to points in an embedding space...



... so we can cluster the embeddings...



# Intuition for confidence measure



**Key insight**: The distribution of embedded TF points is predictive of the performance of the algorithm





For a point  $x_i$  in cluster  $C_k$ Intracluster distance



For a point  $x_i$  in cluster  $C_k$ Intracluster distance



For a point  $x_i$  in cluster  $C_k$ Intracluster distance



For a point  $x_i$  in cluster  $C_k$ Intracluster distance

 $a(x_i) =$ 















For a point  $x_i$  in cluster  $C_k$ Combine and scale:

$$s(x_i) = \frac{b(x_i) - a(x_i)}{\max\left\{a(x_i), b(x_i)\right\}}$$



For a point  $x_i$  in cluster  $C_k$ Combine and scale:

$$s(x_i) = \frac{b(x_i) - a(x_i)}{\max\left\{a(x_i), b(x_i)\right\}}$$

Average across a sample of 1000 TF bins in the top 1% loudest bins

$$S(X) = \sum_{x_i \in X} s(x_i)$$











For a point  $x_i$  in cluster  $C_k$ 

 $p(x_i) =$ 





For a point  $x_i$  in cluster  $C_k$ 

$$p(x_i) = \frac{K\left(\max_{k \in [0,...,K]} \gamma_{ik}\right) - 1}{K - 1}$$

Average across the top 1% loudest bins

$$P(X) = \sum_{x_i \in X} p(x_i)$$

#### Confidence measure

Combine silhouette score and posterior strength in a **product** to obtain the overall confidence measure for the mixture:

confidence measure

$$C(X) = S(X)P(X)$$

silhouette posterior score strength

# Experimental Design



For each domain, train a model with the deep clustering objective

- 2 BLSTM layers
- 300 hidden units in both directions

#### 2D embedding visualization of a music mixture



#### Evaluation of confidence measure

Strong correlations between the confidence measure and ground-truth separation quality



| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     |        |       |          |
| Confidence ensemble | 1      |       |          |
| Random ensemble     | ]      |       |          |
| Speech model        | ]      |       |          |
| Music model         |        |       |          |
| Environ. model      | ]      |       |          |

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     |        |       |          |
| Confidence ensemble | Î      |       |          |
| Random ensemble     | ]      |       |          |
| Speech model        | ]      |       |          |
| Music model         |        |       |          |
| Environ. model      | ]      |       |          |

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     |        |       |          |
| Confidence ensemble | Ī      |       |          |
| Random ensemble     | Ī      |       |          |
| Speech model        | I      |       |          |
| Music model         |        |       |          |
| Environ. model      | Ī      |       |          |

Compare different methods of choosing the appropriate model given an audio mixture

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble |        |       |          |
| Random ensemble     | 1      |       |          |
| Speech model        | ]      |       |          |
| Music model         |        |       |          |
| Environ. model      | ]      |       |          |

**Oracle:** select model with best ground-truth performance

Compare different methods of choosing the appropriate model given an audio mixture

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     |        | -     |          |
| Speech model        | ]      |       |          |
| Music model         |        |       |          |
| Environ. model      | ]      |       |          |

**Confidence**: select model with highest confidence

Compare different methods of choosing the appropriate model given an audio mixture

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     | 4.8    | 4.2   | 2.8      |
| Speech model        |        | -     |          |
| Music model         |        |       |          |
| Environ. model      | ]      |       |          |

Random: select model randomly with equal probability

Compare different methods of choosing the appropriate model given an audio mixture

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     | 4.8    | 4.2   | 2.8      |
| Speech model        | 8.2    | 2.0   | 3.0      |
| Music model         | 1.4    | 6.5   | 2.5      |
| Environ. model      | 2.1    | 1.7   | 11.9     |

**Domain-specific models**: applied without switching

Compare different methods of choosing the appropriate model given an audio mixture

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     | 4.8    | 4.2   | 2.8      |
| Speech model        | 8.2    | 2.0   | 3.0      |
| Music model         | 1.4    | 6.5   | 2.5      |
| Environ. model      | 2.1    | 1.7   | 11.9     |

**Domain-specific models**: applied without switching

Compare different methods of choosing the appropriate model given an audio mixture

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     | 4.8    | 4.2   | 2.8      |
| Speech model        | 8.2    | 2.0   | 3.0      |
| Music model         | 1.4    | 6.5   | 2.5      |
| Environ. model      | 2.1    | 1.7   | 11.9     |

**Domain-specific models**: applied without switching

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     | 4.8    | 4.2   | 2.8      |
| Speech model        | 8.2    | 2.0   | 3.0      |
| Music model         | 1.4    | 6.5   | 2.5      |
| Environ. model      | 2.1    | 1.7   | 11.9     |

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     | 4.8    | 4.2   | 2.8      |
| Speech model        | 8.2    | 2.0   | 3.0      |
| Music model         | 1.4    | 6.5   | 2.5      |
| Environ. model      | 2.1    | 1.7   | 11.9     |

| Approach            | Speech | Music | Environ. |
|---------------------|--------|-------|----------|
| Oracle ensemble     | 8.3    | 6.5   | 12.2     |
| Confidence ensemble | 7.6    | 6.4   | 10.5     |
| Random ensemble     | 4.8    | 4.2   | 2.8      |
| Speech model        | 8.2    | 2.0   | 3.0      |
| Music model         | 1.4    | 6.5   | 2.5      |
| Environ. model      | 2.1    | 1.7   | 11.9     |

# Conclusion

- Confidence measure effectively estimates the performance of clustering-based source separation algorithms
- Apply the confidence measure to effectively select the appropriate model for a given mixture