Bach or Mock? A Grading Function for Chorales in the Style of J.S. Bach

MOTIVATION

Generative ML models for music creation need automatic, interpretable, and musically motivated evaluation measures of generated music.

- due to its size and stylistic consistency
- musical expressivity

A GRADING FUNCTION FOR FOUR-PART CHORALES

A real-valued function that evaluates quality of four-part chorales in the style of J.S. Bach along important musical features

We represent a chorale as a set of distributions, each corresponding to a musical feature.

For each feature f, use the Wasserstein metric to n the distance between the distribution P_c^f of the given chorale c and P_{Bach}^{f} over the set of true Bach choral

Take the weighted sum of the Wasserstein distance overall grade:

$$g(c) = \sum_{f \in \text{features}} w_f \cdot \text{Wass}(P_c^f, P_{\text{Bach}}^f)$$

Note that a lower grade represents a better choral

Alexander Fang, Alisa Liu, Prem Seetharaman, Bryan Pardo Northwestern University, Evanston, IL

Paper: interactiveaudiolab.github.io/assets/papers/Fang2020-MLMD.pdf

BACH CHORALES

• Written for four parts (soprano, alto, tenor, bass) by harmonizing a Lutheran hymn Form a canonical dataset for music generation Represents a compositional challenge by balancing stylistic counterpoint rules with

Excerpt from BWV 308

ch		Table 1 : Features in the grading function				
ICN		Feature	Description	Musical motivati		
neasure ven		Pitch	Distribution of pitches in scale degrees (e.g. 1̂, ♯4̂, ♭5̂)	Measure overall usage of 18 th cer tonality		
ales.		Rhythm	Distribution of note lengths in units of quarter-notes (e.g. J = 1.0, J = 0.5)	Measure Bach-lik of rhythm		
)	{S, A, T, B} Intervals	Distribution of directed melodic interval sizes (e.g. ↑P5, ↓m2)	Evaluate musical and contour of e		
es for t	the	Harmonic qualities	Distribution of vertical harmonic qualities without root and inversion (e.g. major, minor, dominant-seventh)	Measure Bach-lik of 18 th century to vertical chords		
		Parallel errors	Distribution of parallel fifths and octaves part- writing errors	Avoid the hallma writing errors		
le!		Repeated sequence	Distribution of the length of sequences repeated in the chorale	Measure Bach-lil handling of recu motifs and inten musical repetitio		

Code: github.com/asdfang/constraint-transformer-back

EXPERIMENTS

Show that the grading function can be used to interpret musical compositions and outperforms human experts at discrimination

We use the grading function to evaluate the output of a Transformer model with relative attention trained on Bach chorales.

Figure 1 (left): The distribution of grades given to Bach chorales and generated chorales. The distributions are well-separated with a KS test pvalue of 1e-78.

		Note	Rhythm	Parallel Errors	Harmonic Quality	S Intervals	A Intervals	T Intervals	B Intervals	Repeated Sequence	Overall Grade
B	ach	0.24	0.23	0.0	0.41	0.47	0.49	0.53	0.69	1.29	4.91
N	1ock	0.37	0.26	2.126	0.54	0.53	0.71	0.73	0.89	1.86	8.94

We can use the grading function to interpret the musical strengths and weakness of a composition!

We performed a paired discrimination test on 36 human listeners. Each pair contained one Bach and one machine-generated chorale. Selecting the chorale with the better grade results in higher accuracy than human experts at identifying Bach chorales.

Figure 2 (above): A generated chorale receiving an overall grade of 26.0 with a parallel error distance of 5.9. P1 = parallel unison, P5 = parallel 5th, P8 = parallel 8ve.

Our grading function...

- allows researchers to efficiently evaluate their models at more points during the research cycle
- sheds insight into the musical strengths and limitations of generated output
- serves as a consistent benchmark for comparing different models

Bach-like ntury

ike usage

function each voice

ike usage onality in

ark part-

ke rring tional

Table 2 (below): The median value for every feature in the grading function, as well as the overall grade, for Bach chorales and generated chorales. Lower = better.

3	P5 4	5	6	7
			P8	• #•]
			P5	
	P1			