WANLI
- Collaboration for NLI Dataset Creation

Alisa Liu
Swabha Swayamdipta
Noah Smith
Yejin Choi

Demo
https://wanli.apps.allenai.org/
Datasets in natural language processing

Datasets are the backbone of machine learning

good training sets teach our model the task

good test sets evaluate progress

How can we distill human language understanding into datasets that models can learn from and be evaluated on?
Limitations of crowdsourcing

Idea: ask people to write down examples of what they know

Hypotheses

An animal sat on the mat.

A fluffy cat sat on the mat.

No one sat on the mat.

Models overfit to these patterns and don’t produce the right answer for the right reasons

(Geva et al., 2021; Gururangan et al., 2018)

Premise

A cat sat on the mat.

Replace specific words with general ones

Just negate it!

Add a plausible adjective

Limitations of crowdsourcing

Models overfit to these patterns and don’t produce the right answer for the right reasons

(Geva et al., 2021; Gururangan et al., 2018)
Humans are not good at painting a complete picture of what they can do under the task

But we are good at evaluating what’s right and what’s wrong!

We want to use humans to revise + evaluate examples… but where can we get decent examples to start with?

This is where AI comes in!
Worker-AI Collaboration

Leverage the **generative strength** of LMs and **evaluative strength** of humans

LMs create new examples by replicating valuable reasoning patterns in an existing dataset

Humans revise and assign a label
1. **Exemplar collection**: automatically collect groups of examples that share a challenging reasoning pattern

2. **Overgeneration**: prompt GPT-3 to create novel examples with the same reasoning pattern

3. **Filtering**: filter with new metric based on Data Maps

4. **Human annotation**: humans optionally revise for clarity and fluency, and assign a gold label

(Swayamdipta et al., 2020)
1. In six states, the federal investment represents almost the entire contribution for providing civil legal services to low-income individuals. Implication: In 44 states, the federal investment does not represent the entire contribution for providing civil legal services for people of low income levels.

2. But if it's at all possible, plan your visit for the spring, autumn, or even the winter, when the big sightseeing destinations are far less crowded. Implication: This destination is most crowded in the summer.

3. 5 percent of the routes operating at a loss. Implication: 95 percent of routes are operating at either profit or break-even.

4. About 10 percent of households did not Implication: Roughly ninety percent of households did this thing.

5. 5 percent probability that each part will be defect free. Implication: Each part has a 95 percent chance of having a defect.

6. 1 percent of the seats were vacant. Implication: 99 percent of the seats were occupied.
1) Improve the fluency of the text

P: He had no idea that he was the only one in the room.

H: He was the only one in the room, he was the only one in the room.

Entailment

P: There is a slight possibility that, if the same temperature data are used, the temperature of the Earth’s surface in 1998 will be lower than the temperature of the Earth’s surface now.

H: The Earth’s surface in 1998 was lower than the Earth’s surface now.

Neutral

2) Improve the clarity of the relationship

P: As I climbed the mountain, I noticed that the clouds were parting, and the sun was shining through.

H: The sun was shining through the clouds.

Entailment

P: This will be the first time the king has met the queen in person.

H: The king has met the queen in person before.

Contradiction
Worker and AI NLI

(万理)

<table>
<thead>
<tr>
<th>Split</th>
<th>Size</th>
<th>Label distribution (E/N/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>103,079</td>
<td>39K / 49K / 15K</td>
</tr>
<tr>
<td>Test</td>
<td>5,000</td>
<td>1.8K / 2.4K / 745</td>
</tr>
</tbody>
</table>
Does training on WANLI improve model robustness?

WANLI leads to better OOD generalization across the board, despite being 4x smaller.
WANLI contains fewer known artifacts

Compared to MultiNLI, WANLI has

less information about the label contained in the hypothesis alone

fewer previously known lexical correlations

(Gururangan et al., 2018)

(Gardner et al., 2021)
WANLI contains fewer known artifacts

Compared to MultiNLI, WANLI has

less information about the label contained in the hypothesis alone

fewer previously known lexical correlations

less information about the label contained in the semantic similarity between the premise and hypothesis

(Gururangan et al., 2018)

(Gardner et al., 2021)
Human-AI collaborative creation of NLP datasets!

Applied it to create a new dataset for NLI, which we showed leads to more robust models while avoiding known issues in existing NLI datasets.

❓ How can we distill **human language understanding** into datasets that models can **learn from** and be **evaluated** on?

💡 This work: ask workers to **revise** and **evaluate content**, rather than write free-form examples.

Demo
https://wanli.apps.allenai.org/